Hall Ticket Number:

Code No. : 11221 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. I-Semester Main & Backlog Examinations, Jan./Feb.-2024

Calculus & Linear Algebra

(Common for CSE, AIML & IT)

Time: 3 hours

Iviax. Ivia

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Define curvature	2	1	1	1,12
2.	Find the Taylor's series expansion of Sin x about the point $x = \frac{\pi}{2}$	2	2	1	1,12
3.	If $xy^2 \cos xy + x^2 y \sin xy = 0$, find $\frac{dy}{dx}$.	2	2	2	1,12
4.	If $U = f(x, y)$, $x = G(s, t)$, $y = H(s, t)$, $s = g(r)$ and $t = h(r)$, then find the total derivative of U with respect to r.	2	3	2	1,12
5.	Is the set of all real numbers R over the Complex numbers C, with usual complex multiplication as scalar multiplication, a vector space? Explain	2	4	3	1,2,12
6.	Define the Dimension of a vector space V(F)	2	2	3	1,12
7.	Define Null space	2	1	4	1,12
8.	State Rank-Nullity Theorem.	2	1	4	1,12
9.	When a matrix of the linear transformation diagonalizable.?	2	2	5	1,12
10.	If $x = (2, 1 + i, i), y = (2 - i, 2, 1 + 2i)$ be two elements of the inner product space $C^{3}(C)$ with respect to the standard inner product, then find $\langle x, y \rangle$.	2	3	5	1,12
	Part-B ($5 \times 8 = 40$ Marks)				
11. a)	Find the radius of curvature at the origin of the curve $y^2 = x^2 \frac{(a+x)}{(a-x)}$	4	2	1	1,12
b)	Find the Taylor's series expansion of $f(x) = \frac{1}{1+x}$ about x=1 up to 4 th order terms	4	2	1	1,12
12. a)	Find the point on the sphere $x^2 + y^2 + z^2 = 1$ nearest to the point (2, 1, 1).	4	2	2	1,12
b)	Expand $e^x Siny$ in powers of x and y as far as terms of third degree.	4	2	2	1,12

500

:: 2 ::

Code No. : 11221 N/O

D

13. a)	Is the set $\{(1, -2, 3), (2, 3, 1), (-1, 3, 2)\}$ a basis for \mathcal{R}^3 ?	4	3	3	1,12
b)	If $S = \{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n\}$ is a basis for a finite dimensional vector space V of dimension n, then show that every element of V can be uniquely expressed as a linear combination of the elements of S.	4	3	3	1,12
14. a)	Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by	4	3	4	1,12
	T(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t).Find Range(T), Null space (T), rank T and Nullity T.				
b)	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by	4	4	4	1,12
	$T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$. Find the matrix of the linear Transformation T relative to the bases {(1,1,1), (1,1,0), (1,0,0)} and {(1,3), (2,5), }.				
15. a)	From the basis $\{(3,4,0), (2,1,-1), (-2,1,3)\}$, using Gram-Schmidt orthogonalization process construct orthonormal basis in vector space $R^{3}(\mathbb{R})$.	4	3	5	1,12
b)	Find the characteristic values and corresponding Characteristic vectors of the matrix $\begin{bmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{bmatrix}$	4	2	5	1,12
16. a)	Find the evolute of the curve $x^2 = 4ay$	4	2	1	1,12
b)	If $u = Sin^{-1}(x - y)$; $x = 3t$; $y = 4t^3$ find total derivative $\frac{du}{dt}$	4	2	2	1,12
17.	Answer any <i>two</i> of the following:				
a)	Is the set of all 2X2 real matrices over the field of real numbers a Vector space, with respect to addition and multiplication of matrices and scalar multiplication of matrix .?	4	2	3	1,12
b)	Let $T: U \to V$ be a linear transformation and $S = \{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n\}$ is a basis of U, then show that vectors $T(\alpha_1), T(\alpha_2), T(\alpha_3), \dots, T(\alpha_n)$ generate Range of T.	4	3	4	1,12
c)	Is the matrix $\begin{bmatrix} -6 & 7 & -2 \\ -6 & 7 & 0 \\ 3 & -3 & 5 \end{bmatrix}$ diagonalizable? Explain	4	2	5	1,12

i)	Blooms Taxonomy Level – 1	11%	
ii)	Blooms Taxonomy Level – 2	52%	
iii)	Blooms Taxonomy Level – 3 & 4	37%	L
